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We present a simple approximation for dynamical correlation functions in stochastic 
systems which reproduces the high as well as the low frequency behaviour of the exact 
correlation functions. The approximation is applied in its lowest order to diffusion in a 
quartic potential and to autocatalytic chemical reaction systems as described by the 
Schl/Sgl models. The results are compared to those from the conventional Mori-Zwanzig 
projection operator approach which reproduces only the short-time relaxation of the 
systems considered. The new approximation describes correctly slow relaxation pro- 
cesses, e.g. barrier crossing in a quartic potential and the slowing down of dynamic 
processes in finite autocatalytic systems near first and second order transitions. 

1. Introduction 

Processes occurring in the condensed phase can often 
be modelled by stochastic dynamics described ma- 
thematically by means of master-equations, Fokker- 
Planck-equations or Langevin equations. Examples 
are biological processes like the transport of biomol- 
ecules in cells [1], the motion of atoms and side 
groups in proteins [2] as well as the stochastic mo- 
tion along reaction coordinates in elementary chemi- 
cal and biochemical reaction steps [3]. Other exam- 
ples that are more familiar to physicists involve 
dynamical processes in chemical reaction systems 
[4], in liquids [5] and, in particular, at equilibrium 
phase transitions [6]. The quantity of interest for 
theoretical descriptions, apart from static properties, 
is the dynamical correlation function of the essential 
observables, for example in chemical reaction sys- 
tems the particle number correlation function. Since 
even the most simple stochastic models of such sys- 
tems often do not admit exact analytical solutions 
approximation methods for the evaluation of corre- 
lation functions are needed. 
A method often applied is furnished by the Mori- 
Zwanzig projection operator formalism [7, 8]. It in- 
volves a continued fraction approximation to the 
correlation function and employs the correlation 
function's high frequency moments which can be ex- 
pressed solely in terms of static properties of the sys- 

tem considered. This method has been applied suc- 
cessfully in many cases and often a termination of 
the continued fraction after the first few terms gives 
satisfactory results. However, in case the time scales 
of the long-time and the short-time behaviour differ 
considerably one either has to carry out the approxi- 
mations to a high order to reproduce the correct 
long-time behaviour or, more likely, the method fails 
completely. 
We recently developed an extension of the moment 
expansion method described above which employes 
high frequency as well as low frequency moments of 
the correlation function [9,10]. Therefore, this 
method, termed generalized moment expansion, re- 
produces short-time as well as long-time effects. It was 
originally devised for the description of correlation 
functions connected with diffusion-controlled reac- 
tions [11, 12]. The method was subsequently found 
to work well for stochastic systems in general [13]. 
In this paper we will apply the method in its lowest 
order of approximation, the mean relaxation time ap- 
proximation, to stochastic systems that exhibit insta- 
bilities. At instabilities one expects very slow relax- 
ation processes (critical slowing down) and, hence, 
the Mori-Zwanzig formalism involving only high fre- 
quency moments should be inaccurate. 
This paper is organized as follows. In Sect. 2 we 
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present the mean relaxation time approximation and 
discuss its relation to the Mori-Zwanzig formalism. 
In Sect. 3 we apply it to diffusion in a quartic poten- 
tial at the transition from mono- to bistability, and 
in Sect. 4 to chemical reaction systems which exhibit 
first- and second-order phase transitions, namely the 
two Schl6gl models [14]. 

2. Mean Relaxation Time Approximation 

We will be concerned with stochastic processes that 
can be described by an evolution equation for the 
(discrete or continuous) probability distribution P(t) 
of the type 

•, P(t) = LP(t) (2.1) 

where, in case of a master equation, L is a transition 
matrix or, in case of a continuous diffusion pro- 
cess, L is the Fokker-Planck-operator 

L =_17- [y+ (yu)] (2.2) 

with potential U and appropriate boundary con- 
ditions. The operator L should admit a non-zero sta- 
tionary distribution Po, which, in case of a Fokker- 
Planck-equation, is given by the Boltzmann-distribu- 
tion P0 ~ e x p ( -  U). 
We are interested in the steady state time-dependent 
correlation functions of an observable M(t) 

C(t) = (tiM*(0) tiM(t)> 

= (tiM* expEL + t] tiM) (2.3) 

where tim = M - ( M )  and L + is the operator adjoint 
to L. ( ) denotes the average with respect to Po and 
has the properties of an inner product on the space 
of functions tiM. 
An approximation to  C(t) starts with the Laplace- 
transformed correlation function 

C(CO) = ~ dt e x p ( -  co t) C(t) 
0 

= (tiM* [co - L +] - t tiM). (2.4) 

Usually, the Mori-Zwanzig projection operator for- 
malism [7, 8] is used to derive a continued fraction 
approximation to (2.4). In case tiM is the single slow 
variable, this method is tantamount (see e.g. 
[15, 16]) to a Padt-approximation that reproduces 
the first terms of the high frequency expansion 

C(co)=(1/o0) L #,(-1/o))"  (2.5) 
n=O 

where the expansion coefficients (high frequency 
moments) are given by 

#, = ( - 1)" (tiM* [L+]" tiM) (2.6) 

and can be evaluated in a straightforward manner. 
C(co) can then be written in the form 

C(co) = C O [co + 2s - K(co)] - 1 (2.7) 

with 

Co = #0 = (tiM* t im) (2.8) 

2~=#t/# o = - ( t i M * L  + tiM)/(tiM* tiM). (2.9) 

The memory kernel K(co) is determined by the high- 
er moments (2.6) and gives corrections to the relax- 
ation rate Z~. Because of 

Z~ = -(d/dr)It= o C(t)/C(O) (2.10) 

we call 2~ the short time relaxation rate. 
Neglect of the memory kernel gives a single-expo- 
nential approximation to (2.3), the short time approx- 
imation 

C(t) ~- C O e x p ( -  2 s t) (2.11) 

which is satisfying in many cases. However in some 
cases, in particular near instabilities (see e.g. [17]), 
the corrections due to K(co) are essential and have to 
be included to derive the correct long-time be- 
haviour of the correlation functions. 
In a recent article [10] we reported a generalization 
of this method which in addition to expansion (2.5) 
rests on the low frequency expansion 

C(co)= L # - , - i ( - c o ) " -  (2.12) 
n=0 

The expansion coefficients (low frequency moments), 
formally given again by (2.6), but with negative ex- 
ponents, can be evaluated in case the inverse of the 
stochastic operator L + is numerically or analytically 
available [18]. This is always the case for stochastic 
processes that have a one-dimensional structure 
[10], as will be considered in this paper. The gener- 
alized moment method involves a two-point Padt-  
approximation (see e.g. [19]) around c0=oe and 
co=0 that reproduces the moments of (2.5) and (2.12) 
in a balanced way and, thereby, includes short-time 
as well as long-time effects. For  more details we re- 
fer the reader to [9, 10]. Here we limit ourselves to 
the single-exponential approximation (2.11) with Z s 
replaced by the long time relaxation rate 2~, given by 

Zz = # o / # -  1 = - ( t im* tiM>/<tim* EL + ] -1 tiM>. (2.13) 

This approximation reproduces the leading term of 
(2.5) and of (2.12). The inverse of 2t is given -by 

z, = 2 71 = S dt  C(t)/ C(O). (2.14) 
o 
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and is called mean relaxation time; correspondingly 
we call (2.11) with 2~ replaced by 21 the mean relax- 
ation time approximation. It bears a close resem- 
blance to the first passage time in the theory of dif- 
fusion controlled reactions [11, 9]. 
The first low frequency moment #-1  has been de- 
rived in [10] in terms of the stationary distribu- 
tion: 

i) In case the stochastic process is a one-dimension- 
al single-step birth-death process with the tri- 
diagonal transition matrix 

L =  W~2 -- (W21@ W23) W32 

1 ~ . W23 -- (W3 2 -{- W3 4) 

(2.15) 

where W~j denotes the transition rate from state i to 
state j, one obtains 

N--1 n 2 
# 1=  n=l ~ [Wn'n+IP~ 1 i~1 3MiP~ (2.16a) 

with N the number of accessible states. 
ii) In case the stochastic process entails a one-di- 
mensional Brownian motion in a potential U(x) re- 
stricted to the interval [a,b] as described by the 
Fokker-Planck-operator (2.2) one derives 

b x 2 
l~-*=~dx[P~ 1 !dyc~M(y)po(y ) . (2.16b) 

For  the high frequency moment gl one easily ob- 
tains for the respective cases 

i) 

]~1 = < l/Vil, i + * IAMi[2> (2.17a) 

with A M i = M i +  * - M i ,  and 

ii) 

/q = <lM'(x)12>. (2.17b) 

Of interest is the relationship of 2~ and 2 l to the ei- 
genvalues of the operator L. For  simplicity we as- 
sume the case that L has a discrete spectrum. As 
long as detailed balance (see e.g. [20]) holds, the 
case considered here, the eigenvalues - 2 ,  for a sto- 
chastic process (2.1) are real with 2,_>_0; 2o=0  is the 
eigenvalue corresponding to the stationary distribu- 
tion Po and we assume the spectrum to be ordered 
2 o < 2 ,  <)~2 < .... A formal spectral expansion of (2.3) 
then leads to 

C(t)= ~ la,I 2 e x p ( - 2 ,  t) (2.18) 
n=l 

where the a, are determined by the eigenvectors or 
eigenfunctions of  L. From this it is easily seen that 
the following relations ho ld  

2s= ~ 2,1a,I 2 (2.19a) 
n=l 

~ t = 2 ( l =  ~ 2s 2 (2.19a) 
n=l 

lan[ 2 can, therefore, be viewed as a discrete weight 
function for the eigenvalues that contribute to the 
relaxation of the correlation function. 2 s is essen- 
tially determined by the larger eigenvalues, i.e. the 
fast processes, while 2 z is essentially determined by 
the large relaxation times, i.e. the slow processes. 
This is no problem in case the relaxation process 
takes place on a single time scale. In this case 2 s and 
2g will be of comparable size and the approximation 
(2.11) with either relaxation rate will give a reason- 
able description of the correlation function. How- 
ever, if the relaxation process takes place on dif- 
ferent time scales with equal weight, as is the case 
near instabilities, 2s will give only the short-time be- 
haviour and will fail at long times, whereas )~ de- 
scribes the more important long-time relaxation 
though it fails at short times. Therefore, an evalua- 
tion of 2 z promises to be a better and direct way for 
a' first approximation of the long-time behaviour of 
observables. An extension of the mean relaxation 
time approximation involving a series of exponen- 
tials can reproduce correctly both the long- and 
the short time behaviour [9, 10, 21, 22]. 
If a simple observable like the position x of a 
Brownian particle or the particle number N in 
chemical reaction systems is used as a test function 
for the determination of the lowest non-zero eigen- 
value of L by means of (2.11), then )~ is a better 
choice than 2~, since from (2.19) one easily derives 

21 < 2t < 2s (2.20) 

where the equality holds only if the correlation func- 
tion has a single exponential decay. 
As an important cautionary remark we like to add 
that the method described above is limited to cases 
where the long-time relaxation of observables is 
truly exponential. This is the case for systems of fi- 
nite size, but must not hold in the thermodynamic 
limit. For  example, a power-law behaviour is en- 
countered for dynamical correlation functions in 
equilibrium phase transitions and in liquids [5, 6], 
or, in general, if the eigenvalues have an accumu- 
lation point at zero (for examples see [23]). In this 
case one has to resort to other methods, e.g. self- 
consistent determination of the memory kernel or 
renormalization group methods (see e.g. [5, 6]). 
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3. Diffusion in a Quartie Potential 

We consider a diffusive process at the transition 
from a monostable to a bistable behaviour described 
by the Fokker-Planck-operator (2.2) with the quartic 
potential 

U(x) = (~/2) x 2 + (1/4) x 4. (3.1) 

This potential has acquired some fame since it is a 
simple model for the process of symmetry breaking 
[24]. For positive values of ~: this potential has a 
single minimum at x = 0, for negative ~c-values it de- 
velops two minima at x =  _+[~c[ 1/2 and a maximum at 
x=0 .  We will compare the relaxation r a t e s  2 l and 2~ 
for either of the correlation functions 

C l ( t  ) = <6~x (0) ~ x ( t ) >  (3.2 a) 

C2(t ) = <5 x2(0) 6 x2(t)). (3.2b) 

In particular the relaxation rates for C 1 may be used 
as an estimate for the smallest relaxation rate 21. 
Figure 1 presents the dependence on the potential 
parameter tc of 2 s and 2~ resulting from moments ob- 
tained by numerical integration of (2.8), (2.16b) and 
(2.17b). For comparison Fig. 1 shows also the eigen- 
values 21 to 2 s of the corresponding Fokker-Planck- 
operator which were calculated numerically by 
Dekker and van Kampen E25] using the equivalence 
of (2.2) to a Schr6dinger operator [26]. 
In the monostable region (~:>0) 2 t and 2~ coincide 
for both correlation functions. The relaxation of C 1 
is completely determined by the eigenvalue 21 and 
that of C e by 22, a behaviour which is easily under- 
stood considering the symmetry of the respective ei- 
genfunctions. 
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Fig. 1. Dependence of the relaxat ion rates for the correlation 
functions (a) Ci(t ) and (b) C2(t ) on the parameter ~c of the quartic 
potential (3.1); the dashed lines denote the ~-dependence of the 
five smallest negative eigenvalues evaluated in [251; 21 is not dis- 
tinguishable from 2~ within the accuracy of the drawing; the ar- 
rows indicate the values of 2~ and 21 resulting from (3.3) 
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Fig. 2. Relaxation times (inverse relaxation rates) for Ci(t ) corre- 
sponding to curves (a) in Fig. 1. The dashed line corresponds to 
relaxation times evaluated by means of the Kramers approxima- 
tion (3.4) 

Near ~c =0  2 t and 2~ begin to differ with 2~ < 2 s. At 
the instability point (~=0) the relaxation rates for 
C 1 can be evaluated analytically (see the Appendix). 
One obtains 

2 s = 2 F(5/4)/F(3/43 ~ 1.479 (3.3 a) 

2~ = 1//2 {~ - in [(2 + V~)/(2 - If2)] } -1 F(3/4) /F(5/4)  

1.387. (3.3b) 

The value of 2~ is very close to 21 ~ 1.37, determined 
numerically in [25]. It is one of the best analytical 
estimates for 21, surpassed only by 21~1.383 de- 
rived by Bernstein and Brown [27] who exploited 
the inherent supersymmetry of the Fokker-Planck- 
equation by a variational approach. 
In the bistable region (~c<0) 2 s and 2 z for C 2 differ 
only slightly. In this region the relaxation of C 2 is 
mainly determined.by the triplet of eigenvalues 23 to 
25. This is due to the symmetry breaking since C 2 
describes mainly relaxation processes inside either 
potential well. In contrast, the relaxation of C 1 is 
still determined by the eigenvalue 21. Since 2 z (and 
21) nearly vanishes, the relative difference between 2 s 
and 2 z is of significance. This is demonstrated in 
Fig. 2 which presents the corresponding relaxation 
times z s and z~. These differ by orders of magnitude 
and, hence, the short time approximation fails to de- 
scribe the relaxation of C 1, underestimating grossly 
the relaxation time. The large value for h is due to 
barrier-crossing processes that contribute to C 1 but 
not to C 2. For high barriers the barrier crossing can 
be described by the Kramers relaxation rate [28, 20] 

2K = [Ot,(Xmln) Utt(Xmax)]l/2(2.1[)- 1 

- exp [U(Xml.) -- U(xm,x)] 

= l / ~  n-11~cl e x p ( -  tea/4) (3.43 
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which results also from an appropriate approxima- 
tion to (2.16b) (see e.g. [12]) and holds to a very 
good degree for ~c< -2 .  

4. Instabilities in Chemical Reaction Systems 

Chemical reaction systems on a mean field level are 
described by rate equations. To include the effects of 
fluctuations in the number of molecules that take 
part in the reaction process, this description is re- 
placed by a master-equation (2.1) for the probability 
density P(N,  t) for the number N of molecules. Local 
concentration fluctuations are neglected in such a 
description, i.e. one assumes that the time scale of 
chemical reactions is much larger than the diffusive 
time scale [29]. We will assume this throughout the 
remaining part of this paper (for a recent discussion 
of the influence of diffusive processes in the SchlSgl 
models see for example [30] and references there- 
in). 
Schl6gl [14] has introduced two models for autoca- 
talytic reactions that have become standard exam- 
ples for non-equilibrium systems displaying first and 
second order phase transitions. The dynamical par- 
ticle number correlation function 

C(O = (,5 N(t)  6(N(O)) (4.1) 

for the stochastic description of these models has 
been analyzed by Grossmann and Schranner [17] 
using the Mori-Zwanzig-formalism and employing 
high frequency moments. In the following sections 
we will reconsider their study using the mean relax- 
ation time approximation. 

4.1. Sch l fg l  Mode l  1 

The first SchlSgl model corresponds to the reactions 

k l  

A + X , ' 2 X  (4.2a) 
k 2  

tc3 
A , X (4.2b) 

k4 
X , C (4.2c) 

where it is assumed that the concentration of the 
substrate A is kept constant. Following Grossmann 
and Schranner [17] we scale the time ( k 4 t ~ t )  and 
introduce the parameters 

q = k 1 A / k  4 (4.3 a) 

/~ = (k 2 k3)/(k  1 k4) (4 .3b)  

s = k4/k  2. (4.3 c) 
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Fig. 3. Order parameter ( N )  (mean particle number) for the 
SchlSgl model 1 for different values of ~. (a) x=10 -3, (b) ~r 
=10 -4, (c) x=10-6 ;  the system size chosen is O=103 

These substitutions yield for the transition rates con- 
necting the states of N and N_+ 1 molecules of spe- 
cies X 

WN,N+ 1 =qN + f2xq (4.4a) 

WN,N-1 = ( N ( N  - 1)/s + N. (4.4b) 

Since s is proportional to the volume of the system, 
it will be used as a dimensionless measure of the 
system size. q is a control parameter, comparable to 
the temperature in equilibrium phase transition sys- 
tems, and ~ acts as a relevant field. 
For the evaluation of expectation values and mo- 
ments we introduced a cutoff state Nma x. Low and 
high frequency moments were evaluated according 
to (2.8), (2.16a) and (2.17a). For  large values of Nma x 
the results were found to be numerically indepen- 
dent of Nm, x. 
Figure 3 presents the order parameter of the system, 
the mean particle number (N ) ,  as a function of the 
control parameter q for different values of ~c. In the 
mean field description there is a second order phase 
transition at q = l ,  ~c=0. Figure 3 shows that for a 
given system size the transition point is shifted to 
q > l  for small ~: in the stochastic version of the 
model [31]. 
Figure 4 compares the relaxation rates 2 S and 2~ for 
the correlation function (4.1). Outside the transition 
region 2 s and 2~ coincide. However, in the transition 
region 2 s exceeds 2t. For  small ~c the rates differ by 
orders of magnitude. According to (2.10) 2t provides 
an estimate for the true relaxation rate which is 
more suitable than 2 s. The inaccuracy of 2 s cannot 
be reduced very much by an inclusion of higher mo- 
ments in a short-time approximation. 
The locations of the minima of the relaxation rates 
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which can be used to define the transition point for 
a finite size system, are slightly different for 2s and 21, 
and for 2 l lie at higher values of q. In Fig. 5 we show 
how the minimum values of the relaxation rates de- 
pend on the parameters ~c and f2. One observes that 
Z~ and Z~ coincide for ~2--*~, i.e. in the thermody- 
namic limit. This result will hold for the critical 
point of the second Schl6gl model, too. In the ther- 
modynamic limit the relation 

Z l ~ 2 s ~ 2 (4.5 a) 

holds, with 

2=21/7. ( 4 . 5 b )  

This relationship has been derived by Jg.hnig and 
Richter [32] by means of linearized irreversible ther- 
modynamics. 
For  systems of finite size in the limit ~c~0 the two 
approximations give very different results as is clear- 
ly demonstrated in Fig. 5. From the data for Z s in 
Fig. 5 we conclude that in this limit the relation 

)Cs/]~ ~ (K. ~'~) - (1/2 + e) (4.6 a) 

holds, wi th  5>0. It is not possible to decide de- 
finitely whether e is really zero or has a small posi- 
tive value. A value of zero for e would result in the 
relation 

2s ~ Q -  1/2 (4.6 b) 

for the minimum value of the short-time relaxation 
rate in the limit ~ 0 .  That  such a relationship holds 
is supported by the exact result [-33] for the mean 
field transition point (q = 1, ~c = 0) 

2s( q = 1) = (~/2)  1/2 Q -  1/2 .@ 0(~'~-- 1). (4.6 c) 

The data presented in Fig. 6a appear to support 
Eq. 4.6b, too. Altogether this implies that for systems 
of finite size in the limit ~ 0  the short-time approxi- 
mation predicts a non-vanishing or, at least, a very 
slowly vanishing relaxation rate of the particle num- 
ber correlation function. However, this is not the be- 
haviour of the true relaxation rate. 
As already noted above, 2~ is a better estimate for 
the true relaxation rate. From the data for ).~ in 
Fig. 5 we conclude that in the limit ~c~0 the rela- 
tionship 

2 j1 /~  ~ (K ~2) 1/2-~ (4.7a) 

holds, with ~>0. Again it is not possible to decide 
definitely whether the exponent e is really zero or 
has a small positive value. For  e = 0  relation 4.7a 
can be written 

2 t ~ ~c ~1/2 (4.7 b) 

i.e. 2r vanishes linearly with ~c. In fact, the data pre- 
sented in Fig. 6b for Zz demonstrate that 2~ vanishes 
nearly linearly with ~c. 
In closing the discussion of the first Schl6gl model 
we like to note that the data presented in Fig. 5 sug- 
gest that the minimum values of the relaxation rates 
show a scaling behaviour for large but finite systems 

/~s/l(ls Q ) ~ , ] ~ L / l ( ] ~ )  (4.8) 

with a scaling function f~ /~ ( l /~ ) .  Such a f in i te  size 
scaling behaviour is also encountered in second or- 
der equilibrium phase transitions [34]. 
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bet correlation function (4.1) of the Schl6gl model 2 (parameters 
as in Fig. 7) 

4.2. Schl6gl  M o d e l  2 

In the second  Schl6gl  mode l  the reac t ion  (4.2a) is 
rep laced  by  

kl 
A + 2 X  < , 3X. (4.9) 

k2 

Scal ing again  the t ime ( k 4 t - ~ t )  and  in t roduc ing  the 
pa rame te r s  

q = (k 3 k3/k  2 k l )~ l*A 

a = ( k  1 k4/k  2 k3) 1/2 

f2 = (k 3 k4/k  1 k2) t/4 

yields the t r ans i t ion  rates 

VVN, N + I = q N ( N  - 1)/s + (2q/a 

WN, N-1  = N ( N  -- 1) ( N  - 2)/a Y22 + N .  

(4.10a) 

(4.10b) 

(4.10c) 

(4.11a) 

(4.11b) 

Again ,  O is the d imensionless  system size, q is the 
cont ro l  p a r a m e t e r  and  a is the re levant  field. 
F igu re  7 presents  the order  p a r a m e t e r  for different 
values of a and  i l lustrates  qua l i ta t ive ly  the  mean  
field results :  

i )  for a < 3 there is no t r ans i t ion  at  all, 
i i)  for a = 3  there is a second  o rde r  t rans i t ion  at  

q = l ,  

i i i )  for a > 3  there is a first o rde r  t rans i t ion  at  some 
value q <  1; in the  t r ans i t ion  region the p robab i l i t y  
d i s t r ibu t ion  is b i m o d a l  (see e.g. [17]. 

The  re laxa t ion  rates for the cor re la t ion  funct ion (4.1) 
co r re spond ing  to the curves of Fig. 7 are shown in 
Fig.  8. F o r  q < l  2 s and  2~ coincide.  F o r  q > l  and  
a < 3  2 s exceeds 2~ insignificantly.  N e a r  the cri t ical  
po in t  ( a =  3) the difference between 2 s and  21 grows 
larger  and  the t rans i t ion  po in t  is shifted to q > l  



60 W. Nadler and K. Schulten: Stochastic Systems near Instabilities 

101 I n , , 

10 o 

~_ i0 q 

x 

10-2 

10 -3  I I I I I 

io -5 1o .3 1o -I 101 

inverse system size Q-1 
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relaxation rates for the particle number correlation function (4.1) 
of the Schl6gl model 2 at the critical point a=3 ,  q = 1; the solid 
line denotes relation (4.12b) 
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Fig. 10. f2(system size)-dependence of the minimum values of the 
relaxation rates for the particle number correlation function (4.1) 
of the Schl6gl model 2 near a first order transition (a =5) 

where the locations of the minima of the relaxation 
rates 2~ and 2~ differ. However, in the thermody- 
namic limit the minima are shifted back to q--1 
and, as shown in Fig. 9, the difference between the 
minimum values of 2~ and 21 vanishes. Therefore, we 
conclude from (2.10) that in this limit the smallest 
relaxation rate has the behaviour derived for 2 s by 
Grossmann and Schranner [17, 35], i.e. 

21~21~2  s (4.12a) 

with 

2 S = [ r ( 5 / 4 ) / ( F ( 7 / 4 ) ]  •-1/2 + 0(O-1). (4.12b) 

The difference of short-time and mean relaxation 
time description of correlation functions for systems 
of finite size near a second order phase transition 
has been demonstrated above also for the first 
Schl6gl model. Again this difference vanishes in the 
thermodynamic limit. 
However, such a convergence is not found in the re- 
gion of the first order transition (a>3), where large 
differences for the minimum values of the relaxation 
rates appear. Figure 8 shows that even for a system 
of small size 2 s and 2~ differ by orders of magnitude. 
Figure 10 demonstrates that the behaviour 

2 t ~ exp( - O) (4.13) 

holds. This relation has been derived by Janssen 
[29] for the lowest eigenvalue, demonstrating that the 
mean relaxation time approximation based on the 
low frequency moment #-1  provides a satisfactory 
description. In contrast, the short-time approxima- 

tion shows the behaviour 

,t+~ f2 - I  (4.14) 

and, hence, fails to describe the correct long-time re- 
laxation even for small system size. This result may 
be compared with the corresponding result for the 
correlation function C 1 (3.2a) for diffusion in the 
quartic potential of Sect. 3. There an analogous dis- 
crepancy between 2 s and ).~ occurred for ~c<0, i.e. 
in the parameter region where the stationary distribu- 
tion becomes bimodal. In the bimodal regime of the 
quartic potential the long relaxation time is due to 
barrier crossing processes and exhibits the behaviour 
h ~ e x p ( A U )  where A U is the barrier height. In 
the second Schl6gl model for a > 3  the stationary 
distribution is bimodal as well. The dominant long- 
time processes contributing to the particle number 
correlation function (4.1) are transitions between the 
different distribution peaks corresponding to barrier 
crossing. For  the same reasons as for the quartic po- 
tential the short-time description fails even if memo- 
ry terms are included [17]. 

5. Summary 

Relaxation processes are slow near instabilities corre- 
sponding to first and second order phase transitions 
even in systems of finite size and must be described 
by approximations which take the low frequency 
moments g_, ,  n > 0  into account. Application to the 
first and second Schl6gl model demonstrates that 
such an approximation, even at its lowest level, sat- 
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isfactorily describes the increase of the relaxation 
time near phase transitions in finite systems and is 
superior to the conventional Mori-Zwanzig projec- 
tion operator formalism involving high frequency 
moments only. 

Appendix 

At to=0 the first high frequency moments for the 
correlation function Cl(t ) of a diffusion process in 
the potential (3.1) are given by 

#1 = ( 1 ) - - 1  (A1) 

#o = (x2)  =2F(3/4)/F(1/4). (A2) 

The low frequency moment #_1 is determined from 
(2.16b) in the following way 

#-1 = (2/N) ~ dx exp (x#/4) I(x) (A 3) 
0 

with (for the last identity see [36]) 

2 

I(x) = ! dyy exp ( -y4/4)  

= ~ dz - z 2 )  2 exp ( 
x2/2 

=~ dt exp  I - x 4 ( 1  +t2)/4]/(1 + t  2) 
1 

and 
o(3 

N = 2 ~ dx exp ( - x4/4) = F(1/4)/1/2. 
0 

(A4) 

(aS) 

After changing the order of integration the evalua- 
tion of (A3) is straightforward. One obtains 

oo 

# -  1 = ~ d t t -  1/2(1 + t 2 )  - 1 

1 

= {n - I n  [(2 + ]//2)/(2 - ~/2)] }/2172. (A 6) 

With these results equations (3.3) follow im- 
mediately. 
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